Heterogeneous Differential Evolution for Numerical Optimization
نویسندگان
چکیده
منابع مشابه
Heterogeneous Differential Evolution for Numerical Optimization
Differential evolution (DE) is a population-based stochastic search algorithm which has shown a good performance in solving many benchmarks and real-world optimization problems. Individuals in the standard DE, and most of its modifications, exhibit the same search characteristics because of the use of the same DE scheme. This paper proposes a simple and effective heterogeneous DE (HDE) to balan...
متن کاملDifferential Evolution with Enhanced Abilities for Adaptation Applied to Heterogeneous Numerical Optimization
This article presents an exploration of Differential Evolution (DE) algorithm with enhanced adaptability. The main purpose of this study is to identify how this search method can cope with changes of the number of variables of a hard design test, unaided. The results clearly show that this method successfully solves the explored functions.
متن کاملGroup-based Differential Evolution for Numerical Optimization Problems
This paper proposes a group-based differential evolution (GDE) algorithm for numerical optimization problems. The proposed GDE algorithm provides a new process using two mutation strategies to effectively enhance the search for the globally optimal solution. Initially, all individuals in the population are partitioned into an elite group and an inferior group based on their fitness value. In th...
متن کاملDifferential Evolution Using Opposite Point for Global Numerical Optimization
The Differential Evolution (DE) algorithm is arguably one of the most powerful stochastic optimization algorithms, which has been widely applied in various fields. Global numerical optimization is a very important and extremely difficult task in optimization domain, and it is also a great need for many practical applications. This paper proposes an opposition-based DE algorithm for global numer...
متن کاملAn Adaptive Cauchy Differential Evolution Algorithm for Global Numerical Optimization
Adaptation of control parameters, such as scaling factor (F), crossover rate (CR), and population size (NP), appropriately is one of the major problems of Differential Evolution (DE) literature. Well-designed adaptive or self-adaptive parameter control method can highly improve the performance of DE. Although there are many suggestions for adapting the control parameters, it is still a challeng...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Scientific World Journal
سال: 2014
ISSN: 2356-6140,1537-744X
DOI: 10.1155/2014/318063